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Abstract. Current automobiles’ safety systems based on video cameras
and movement sensors fail when objects are out of the line of sight. This
paper proposes a system based on pulsed neural networks able to de-
tect if a sound source is approaching the sensor or moving away from it.
The system, based on PN models, compares the sound level difference
between consecutive instants of time in order to determine its relative
movement. Moreover, the combined level difference information of all fre-
quency channels permits to identify the type of the sound source. Exper-
imental results show that, for three different vehicles sounds, the relative
movement and the sound source type could be successfully identified.

1 Introduction

Driving safety is one of the major concerns of the automotive industry nowa-
days. Video cameras and movement sensors are used in order to improve the
driver’s perception of the environment surrounding the automobile [1][2]. These
methods present good performance when detecting objects (e.g., cars, bicycles,
and people) which are in line of sight of the sensor, but fail in case of obstruction
or dead angles. Moreover, the use of multiple cameras or sensors for handling
dead angles increases the size and cost of the safety system.

The human being, in contrast, is able to perceive people and vehicles around
itself by the information provided by the auditory system [3]. If this ability could
be reproduced by artificial devices, complementary safety systems for automo-
biles would emerge. Cause of diffraction, sound waves can contour objects and
be detected even when the source is not in direct line of sight.

A possible approach for processing temporal data is the use of Pulsed Neuron
(PN) models [4]. This type of neuron deals with input signals on the form of
pulse trains, using an internal membrane potential as a reference for generating
pulses on its output. PN models can directly deal with temporal data and can be
efficiently implemented in hardware, due to its simple structure. Furthermore,



high processing speeds can be achieved, as PN model based methods are usually
highly parallelizable.

A sound localization system based on pulsed neural networks has already
being proposed in [5] and a sound source identification system, with a corre-
sponding implementation on FPGA, was introduced in [6]. This paper focuses
specifically on the relative moving direction of a sound emitting object, and
proposes a method to detect if a sound source is approaching or moving away
from the sensor. The system, based on PN models, compares the sound level
difference between consecutive instants of time in order to determine its relative
movement. Moreover, the proposed method also identifies the type of the sound
source by the use of PN model based competitive learning pulsed neural network
for processing the spectral information.

2 Pulsed Neuron Model

When processing time series data (e.g., sound), it is important to consider the
time relation and to have computationally inexpensive calculation procedures
to enable real-time processing. For these reasons, a PN model is used in this
research.

Figure 1 shows the structure of the PN model. When an input pulse ik(t)
reaches the kth synapse, the local membrane potential pk(t) is increased by the
value of the weight wk. The local membrane potentials decay exponentially with
a time constant τk across time. The neuron’s output o(t) is given by

o(t) = H(I(t) − θ) I(t) =

n
∑

k=1

pk(t) (1)

where n is the total number of inputs, I(t) is the inner potential, θ is the threshold
and H(·) is the unit step function. The PN model also has a refractory period
tndti, during which the neuron is unable to fire, indepently of the membrane
potential.

3 The Proposed system

The basic structure of the proposed system is shown in Fig.2. This system con-
sists of three main blocks, the frequency-pulse converter, the level difference
extractor and the sound source classifier, from which the last two are based on
PN models.

The relative movement (approaching or moving away) of the sound source is
determined by the sound level variation. The system compares the signal level
x(t) with the level in a previous time x(t − ∆t). If x(t) > x(t − ∆t), the sound
source is getting closer to the sensor, if x(t) < x(t−∆t), it is moving away. After
the level difference having been extracted, the outputs of the level difference
extractors contain the spectral pattern of the input sound, which is then used
for recognizing the type of the source.
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Fig. 1. Pulsed neuron model

3.1 Filtering and Frequency-Pulse Converter

Initialy, the input signal must be pre-processed and converted to a train of pulses.
A bank of 4th order band-pass filters decomposes the signal in 13 frequency chan-
nels equally spaced in a logarithm scale from 500 Hz to 2 kHz. Each frequency
channel is modified by the non-linear function shown in Eq.(2), and the resulting
signal’s envelope is extracted by a 400 Hz low-pass filter. Finally, each output
signal is independently converted to a pulse train, whose rate is proportional to
the amplitude of the signal.

I(t) =

{

x(t)
1
3 x(t) ≥ 0

1

4
x(t)

1
3 x(t) < 0

(2)

3.2 Level Difference Extractor

Each pulse trains generated by the Frequency-Pulse converter is inputted in a
Level Difference Extractor (LDE) independently. The LDE, shown in Fig. 3, is
composed by two parts, the Lateral Superior Olive (LSO) model and the Level
Mapping Two (LM2) model [7]. The LSO is responsible for the time difference
extraction itself, while the LM2 extracts the envelope of the complex firing pat-
tern.

Each pulse train correspondent to each frequency channel is inputted in a
LSO model. The PN potential of f th channel, ith LSO neuron ILSO

i,f (t) is calcu-
lated as follows:

ILSO
i,f (t) = pN

i,f (t) + pB
i,f (t) (3)

pN
i,f (t) = wN

i,f xf (t) + pN
i,f (t − 1)e

−

t
τLSO (4)

pB
i,f (t) = wB

i,f xf (t − ∆t) + pB
i,f (t − 1)e

−

t
τLSO (5)
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where τLSO is the time constant of the LSO neuron and the weights wN
i,f and

wB
i,f are defined as:

wN
i,f =
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−10
K−i

α i ≥ −b ,

(6)

where α, γ are parameters, K is the index of the last neuron of each side of the
LSO (totalizing 2K +1 neurons, including the central neuron) and b is the index
of the last inner neuron of each side of the LSO.

As larger the signal becomes, more neurons fire on the LSO model. The
LM2 stage then generates a clearer output, extracting the envelope of the firing
pattern generated by the LSO. The potentials in the LM2 are calculated as
follows:

ILM2

l,f (t) = pD
l,f (t) + pS

l,f (t) (7)

pD
l,f (t) = mi,f (t) + pD

l,f (t − 1)e
−

t
τLM2 (8)

pS
l,f (t) = −mi,f (t) + pS

l,f (t − 1)e
−

t
τLM2 (9)

where τLM2 is the time constant of the LM2 neuron and mi,f (t) is the output
of the ith LSO neuron in f th frequency channel.

3.3 Sound Source Classifier

The sound source classifier is based on the Competetive Learning Network using
Pulsed Neurons (CONP) proposed in [5]. The basic structure of CONP is shown
in Fig.4.
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Fig. 3. Level difference extractor
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Fig. 4. Competitive Learning Network using Pulsed Neurons (CONP)

In the learning process of CONP, the neuron with the most similar weights
to the input (winner neuron) should be chosen for learning in order to obtain
a topological relation between inputs and outputs. However, in the case of two
or more neurons firing, it is difficult to decide which one is the winner, as their
outputs are only pulses, and not real values. In order to this, CONP has extra
external units called control neurons. Based on the output of the Competitive
Learning (CL) neurons, the control neurons’ outputs increase or decrease the
inner potential of all CL neurons, keeping the number of firing neurons equal to
one. Controlling the inner potential is equivalent to controlling the threshold.
Two types of control neurons are used in this work. The No-Firing Detection
(NFD) neuron fires when no CL neuron fires, increasing their inner potential.
Complementarily, the Multi-Firing Detection (MFD) neuron fires when two or
more CL neurons fire at the same time, decreasing their inner potential.



The CL neurons are also controlled by another potential, named the input
potential pin(t), and a gate threshold θgate. The input potential is calculated as
the sum of the inputs (with unitary weights), representing the rate of the input
pulse train. When pin(t) < θgate, the CL neurons are not updated by the control
neurons and become unable to fire, as the input train has a too small potential
for being responsible for an output firing. Furthermore, the input potential of
each CL neuron is decreased along time by a factor β, to follow rapid changes
on the inner potential and improving its adjustment.

Considering all the described adjustments on the inner potential of CONP
neurons, the output equation (1) of each CL neurons becomes:

o(t) = H

(

n
∑

k=1

pk(t) − θ

+ pnfd(t) − pmfd(t) − β · pin(t)

)

(10)

where pnfd(t) and pmfd(t) corresponds respectively to the potential generated by
NFD and MFD neurons’ outputs, pin(t) is the input potential and β (0 ≤ β ≤ 1)
is a parameter.

4 Experimental Results

Three different sound sources were used on the experiments: “police car”, “am-
bulance” and “scooter”. The first two correspond to the alarm sounds of the
vehicles, while the last corresponds to the engine sound of a scooter. All the sig-
nals were recorded from a static sound source. The moving sound source signals
were generated by computer, with the sound intensity at each instant of time
calculated as:

I(t) = 20Ib log10

d(t)

db

(11)

where Ib is a sound intensity in the center position, db and d(t) are, respectively,
the distance between the sensor and the sound source at center position and
the distance at time t. All signal have 4.0 s of duration and the sound source is
normal to the sensor at 2.0 s, as shown in Fig. 5.

4.1 Level Difference Information Extraction

The level difference information was extracted as described in section 3.2. The
used parameters for the signal acquisition, preprocessing and level difference
extraction are shown in Table 1.

Figure 6 shows the output of the LDE model for the “police car” signal
in four distinct intervals of time. The x-axis corresponds to the index of the
neurons in the LM2, representing the level difference information, and the y-axis
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Table 1. Parameters of each module used on the experiments

Input Sound

Sampling frequency 48 kHz
Quantization bits 16 bits
Number of frequency channels 13 channels
Delay time ∆t 0.4 s

Level Difference Extractor

Number of total LSO neurons K 51 units
Number of inner LSO neurons b 10 units
Number of output neurons L 48 units
Threshold θLSO 0.001
Threshold θLM2 0.001
Time constant τLSO 0.1 s
Time constant τLM2 35.0 µs
Parameter α 60
Parameter β 60

corresponds to the frequency channels. The gray level intensity represents the
rate of the output pulse train.

The firing pattern differs significantly from each interval of time, especially
when comparing the graphics of opposite relative movements. Although the LM2
could not successfully extract the envelope from the firing pattern of the signals
corresponding to a sound source moving away from the sensor, the result is
enough clear for distinguishing it from an approaching sound source signal.

Figure 7 shows the firing patterns of each kind of sound for the approaching
(interval of 0.0 ∼ 2.0 s) and moving away (2.0 ∼ 4.0 s) cases. As different fre-
quency components present different firing information, it is possible to classify
the sound source, as described in the next section.
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Fig. 6. Level Difference Extractor output of the “police car” dataset
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Table 2. Parameters of CONP used on the experiments

Competitive learning Neuron

Number of Inputs of CL neurons 637 units
Number of CL neurons 30 units
Threshold θ 1.0×10−4

Gating threshold θgate 150.0
Rate for input pulse frequency β 0.0629
Time constant τp 0.1 s
Refractory period tndti 10 ms
Learning coefficient α 2.0×10−8

Learning iterations 1000

No-Firing Detection Neuron

Time constant τNFD 0.5 ms
Threshold θNFD -1.0×10−3

Connection weight
to each CL neurons 16.0

Multi-Firing Detection Neuron

Time constant τMFD 1.0 ms
Threshold θMFD 2.0
Connection weight

from each CL neurons 16.0

4.2 Sound Source Classification

The firing information patterns provided by all the level difference extractors
are recognized by the CONP model described in section 3.3. The CONP model
was trained according to the parameters shown in Table 2. Table 3 shows the
accuracy of the CONP model for each dataset. The recognition rate is defined
as the ratio between the number of neuron’s firing corresponding to the correct
vehicle and relative movement and the total number of firings. The correct sound
source and relative direction could be recognized with an average accuracy of
85.8%.

The results of the “scooter” dataset present a better recognition rate than
the “police car” and “ambulance” datasets. The reason for this is that the sound
signal of the “scooter” dataset is constant over time, in opposite to the alarm
sounds of the other two vehicles, which actually correspond to two different and
alternated sounds. Thus, the CONP model can be more efficiently trained with
the “scooter” data than the others, which would require more data in order to
obtain a comparable accuracy.

5 Conclusions

This paper proposes a system for detecting the approaching and classifying a
sound source using pulsed neural networks. The system extracts the level dif-
ference information from pulse trains corresponding to several frequency bands.
The firing pattern is then classified by a CONP model, which identifies the type
and recognizes the relative movement of the sound source.



Table 3. Results of sound recognition
( A = Approaching , M = moving away )

Recognition Rate[%]
police car ambulance scooter

Input Sound A M A M A M

police A 70.6 6.8 2.4 7.3 12.9 0.0
M 6.8 88.3 0.0 4.9 0.0 0.0

ambulance A 1.1 4.2 82.8 9.9 2.0 0.0
M 3.8 0.2 7.3 86.3 0.0 2.4

scooter A 0.0 0.0 5.7 0.0 94.3 0.0
M 0.0 1.9 0.3 5.4 0.0 92.4

The experimental results confirmed that the PN model based level difference
extractor can successfully detect the relative movement (approaching or moving
away) of a sound source. By using the firing pattern provided by the LDE, the
sound source type and relative movement could be correctly classified with a
average accuracy of 85.8%.

Future works include the detection of a sound source position (its distance
from the sensor) and the combination of the proposed system with a sound lo-
calization method. The hardware implementation of the proposed systems using
an FPGA device is also in progress.
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