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あらまし 多クラスサポートベクトルマシン (SVM) は認識性能の優れた学習モデルの一つであり，近年多く実用的

な認識問題に適用されている。しかし、SVMの出力は正規化されていないため、多クラス SVMにおいては各 SVM

の出力値を比較利用することが困難である。これに対して Plattによって SVMの出力を事後確率に変換することで正

規化する手法、シグモイドフィッティングが提案されている。本論文では、多クラス SVMでの使用を考慮して Platt

の手法を拡張し、全ての SVMのパラメータ最適化を一括して行う手法を提案し、計算機シミュレーションにより本

手法の有効性を確認した。
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Abstract Support Vector Machines (SVM) have been successfully applied in many classification tasks with great

generalization performance. However, the output function of SVMs gives an uncalibrated value, impairing the

post-processing and making the combination of several classifiers inefficient, as in the case of multiclass SVMs.

Some methods of transforming the binary SVM output in a calibrated posterior probability have been proposed,

notably the sigmoid fitting method by Platt. This paper proposes an extension of the Platt’s model for multiclass

SVMs, by combining the optimization procedures of all sigmoid functions. Experimental results are presented and

confirm the efficiency of the proposed method.
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1. Introduction

Support Vector Machine (SVM) [1], [2] is a structural risk

minimization method that has been successfully applied in

many classification tasks with great generalization perfor-

mance. In order to be applied to multiclass problems, an

ensemble of classifiers is necessary, as SVM is an strictly bi-

nary classifier. Due to its uncalibrated output function and

different output ranges among classifiers, the direct combi-

nation of several SVMs in an ensemble structure is ineffi-

cient [3]. Moreover, as mentioned by many authors, a classi-

fier should output posterior class probabilities to allow post

processing [3], [4]. Many approaches address the problem of

converting the SVM output in a calibrated probability, being

Platt’s methodology [4] the most well know.

Platt’s approach consists of the direct conversion of the

SVM output function values to posterior probabilities by fit-

ting the SVM output with a sigmoidal function. This so-

lution has the desirable property of maintaining the sparse-

ness of the solution. However, this method is only suitable

for binary classifiers, as it is based on a binomial maximum

likelihood estimation to fit the sigmoid functions. A natural

approach for extending this approach for multiclass domain

is fit the output of each binary SVM with an independent sig-

— 1 —



moid function, a strategy adopted by several authors [3], [5].

Although giving acceptable results in simple problems, this

approach does not guarantee a global optimal solution. Even

though each SVM will be fitted by its optimal sigmoidal func-

tion, not necessarily these fittings will be the best ones when

all the outputs are combined in order to generate the final

output. In order to find the best solution, the fitting func-

tions should be optimized in relation to the decoded final

output.

Another problem with this naive approach happens when

some categories presents small number of samples (unbal-

anced data) or presents a high separability. The first case

lead to biased sigmoidal functions, while, for the second, any

parameters gives perfect separations, making the optimiza-

tion method to diverge or give extreme values. Platt recom-

mended the use of a cross-validation procedure in order to

avoid this problems of convergence. Another solution is the

use of extra noisy data. Those procedures. however, do not

solve the problem completely, also increasing the computa-

tional complexity of the classifier training.

This work proposes a new method for optimizing the

sigmoidal functions. Instead of independently fitting each

SVM’s output, the proposed approach combine all sigmoidal

function parameters in a single optimization procedure.

Thus, all sigmoidal functions’ parameters are retrieved si-

multaneously. Moreover, the interdependency of the func-

tions avoid the optimization diverge for unbalanced or too

simple classifiers.

Experimental results show that for balanced problems, the

proposed method presented comparable results to the naive

application of independent sigmoidal functions. For unbal-

anced classes, the new approach outperformed the previous

approach considerably.

The organization of the paper goes as follows: a more de-

tailed revision of Platt’s model and previous extensions to

multiclass are presented in Section 2., and Section 3. intro-

duces the proposed model. Section 4. presents experiments

with the new model and comparisons with previous meth-

ods, and Section 5. concludes the paper with analysis of the

results and suggests possible future extensions.

2. Fitting the SVM outputs

2. 1 Original Platt’s model

After the SVM training procedure, Platt suggested to use a

two-parameter sigmoid function in order to change the SVM

output f (x) in a posterior probability P (ωk |x ). The use of

a sigmoidal function comes from empirical observations of the

distribution of the output values. This approach keeps the

SVM error function unchanged, also maintaining the sparse-

ness of the solution. The sigmoidal function has the form:

Encoding Matrix

SVM1

f1(x)

P(y1=mk1|x)

Probabilistic decoding

SVM2

f2(x)

P(y2=mk2|x)

SVMH

fH(x)

P(yH=mkH|x)

...

...

P(y=ωk|x)

CG(A2,B2)CG(A1,B1) CG(AH,BH)

図 1 Independent sigmoid fitting multiclass SVM structure

P (y = 1 |f ) =
1

1 + exp (Af + B)
(1)

in which f is a simplified notation of the SVM output given

by:

f (x) =
∑

n∈SV

ynαnK (xn,x) + b (2)

where xn is the nth support vector, yn is the label of the nth

support vector, K (xn,x) is the Kernel function, αn is the

Lagrange multiplier of the nth support vector and b is the

bias.

In order to find an optimal sigmoid fitting based on the in-

put patterns, the posterior class probability p (y |f ) is max-

imized by the likelihood function of the SVM output:

L′ (yi |pi ) =
∏

i

Pi (Yi = yi |pi ) (3)

where Yi is the classifier’s final output and pi is an abbrevi-

ated form of equation 1. Redefining yi in order to represent

a target probability:

ti =

{

N++1

N++2
if yi = +1

1

N
−

+2
if yi = −1

(4)

where N+ is the number of positive samples and N− is the

number of the negative samples. Finally, with the use of

the new targets, equation 4 assumes the form of a Bernoulli

distribution and can be rewritten as:

L′ (ti |pi ) =
∏

i

pti
i (1 − pi)

1−ti (5)

or, in the negative log likelihood form (abbreviating

− ln L′ (ti |pi ) to L):

L = −
∑

i

[ti ln (pi) + (1 − ti) ln (1 − pi)] (6)

The parameters Â and B̂ that minimize equation (6) are
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Encoding Matrix

SVM1

f1(x)

P(y1=mk1|x)

Probabilistic decoding

SVM2

f2(x)

P(y2=mk2|x)

SVMH

fH(x)

P(yH=mkH|x)

...

...

P(y=ωk|x)

CG(A,B)

図 2 Multiclass sigmoid fitting multiclass SVM structure

the best fitting sigmoid function for f (x). In order to per-

form this minimization, Platt used a model-trust minimiza-

tion algorithm in his experiments. In this paper, the Conju-

gate Gradient (CG) minimization method [6] was used.

2. 2 Previous extensions to multiclass classifica-

tion and decoding frameworks

Several authors proposed extensions of Platt’s model for

multiclass classification. All these methods, however, naively

apply his method in each SVM independently, consisting ba-

sically in frameworks for decoding the various binary clas-

sifiers probabilities in a final posterior class probability out-

put. For instance, Passerini, Pontil and Frasconi [3] proposed

a new probabilistic decoding procedure for multiclass SVM

using error correcting output encodings that outperformed

other decoding methods, such as hamming distance and loss

based decoding. This method, however, considers all classes

statistically independent, what is not true, as the classifiers

corresponding to one class were trained with the same sam-

ples of that class.

In their large scale classification model CombNET-III, Ku-

gler et al. [5] proposed an alternative probabilistic decoding

function which maintains the classifiers confidence on the

overall sample space, a desirable property for divide-and-

conquer based models.

Given a coding matrix MK×H in which K is the number of

classes and H is the number of classifiers, mk,h = {−1, 0, +1}

and zero entries are interpreted as “don’t care”, the probabil-

ity of class ωk given an unknown sample x is defined as the

average probability outputted by the classifiers containing

that class. The proposed decoding function hence becomes:

P (ωk |x ) =

∑

h:mk,h |=0

P (yh = mk,h |x )

H
∑

h=1

|mk,h|

(7)

where MK×H is the coding matrix, with mk,h = {−1, 0, +1},

K is the number of classes and H is the number of classifiers.

This model, however, also presents all the SVMs sigmoid

functions being optimized independently. The main struc-

ture of this kind of model is shown in Figure 1. All proposed

decoding functions rely on well estimated sigmoid functions.

However, as mentioned before, situations in which one class

has considerably more samples than the other or two classes

can be separated much more easily than others are hard to

deal and often leads to bad classification results. Next sec-

tion introduces a method for addressing all this problems.

3. Proposed Model

In order to combine the optimization of all sigmoid func-

tions in a single process, a new likelihood function must be

defined. The likelihood function must be based on a prob-

abilistic decoding framework that combines all SVM output

probabilities in a final output. This paper makes use of the

decoding function proposed by Kugler et al. [5] and shown in

equation (7), although any other decoding function could be

used, following the same procedure.

At first, the decoding function must be modified in order

to directly contain the two-parameter sigmoid function of

equation (1). Considering the two possible values of mkh on

the upper part of equation (7), it is possible to denote:

P
(

yh = mk,h |x i

)

=

{

pih mkh = +1

1 − pih mkh = −1
(8)

The two situations can be combined as:

P (yh = mk,h |xi ) =
1 − mkh

2
+ mkhpih (9)

Applying (9) in (7):

P (ωk |xi ) =

∑

h:mk,h |=0

1−mkh

2
+ mkhpih

H
∑

h=1

|mk,h|

(10)

where

pih = PA,B (y = 1 |fh (xi) )

=
1

1 + exp (A · fh (xi) + B)
(11)

The new target probabilities must now be defined for all

classes. Following the same approach proposed by Platt for

defining the values of the targets based on the number of

samples:

tik =

{

N++1

N++2
if xi ∈ ωk

1

N
−

+2
if xi /∈ ωk

(12)

where the value of each element of the target probability vec-

tor tend to {0, 1} when the number of samples tends to infi-

nite and to 0.5 when the number of samples tend to zero. As
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表 1 Database Description

Database Classes Training Test Features

Segment 7 210 2100 18

Optdigits 10 3823 1797 64

Satimage 6 4435 2000 36

the targets are now represented by a vector with k elements,

it is not possible to use a binomial distribution. Instead, the

proposed likelihood function is defined as:

L′ (ti |pi ) =
∏

i

∏

k

[P (ωk |xi )]
tik (13)

or, in the negative log likelihood form (abbreviating

L′ (ti |pi ) to L):

L = −
∑

i

∑

k









tik ln

∑

h:mk,h |=0

1−mkh

2
+ mkhpih

H
∑

h=1

|mk,h|









(14)

By finding the first and second derivatives of equation (14),

it is possible to apply the CG minimization method in order

to find the optimal parameters Â and B̂. The final structure

of the proposed method is shown diagrammatically in Figure

2.

4. Experiments

Three databases from the UCI repository [7] were used to

evaluate the performance of the proposed method. The Seg-

ment database is an image segmentation database contain-

ing 3x3 pixel regions extracted from 7 outdoor images (cat-

egories)（注1）. The Optdigits is a handwritten digits recogni-

tion database. The Satimage database consists of the multi-

spectral values of pixels in 3x3 neighborhoods in satellite

images of several types of soil（注2）. A description of the used

databases is shown in Table 1.

All experiments were performed using in-house developed

software packages. The output encoding used on the exper-

iments is the One-versus-One (OvO) [8], although any other

encoding could have been used, as the proposed method is

generic for any encoding matrix. The SVM used Kernel func-

tion was the Gaussian Kernel. The proposed method was

compared with the the results obtained by simply fitting an

independent sigmoid in each SVM and using equation (7) to

decode the final probability.

Figure 3 shows the classification accuracy obtained by both

（注1）：For the Segment database, the feature that contains the num-

ber of pixels (”region-pixel-count”) is constant (always 9) and was

removed, changing the original number of features from 19 to 18.

（注2）：The Satimage database have one of the 7 classes with no pat-

terns. This class was not considered and the classes were relabeled

from 0 to 5.
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図 3 Classification results for the Segment database
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図 4 Classification results for the Optdigits database

Binary Sigmoid Optimization

Multiclass Sigmoid Optimization

0 2 4 6 8 10
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

sigma

R
e

co
g

n
it

io
n

 R
a

te

図 5 Classification results for the Satimage database

methods for the Segment database for several values of the

Kernel parameter σ. The value of the soft-margin parameter

was experimentally fixed in C = 20 for both methods. The

proposed method maximal accuracy was 91.81% while the

independent binary fitting method’s maximal accuracy was
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図 6 Classification results for the unbalanced Segment database

(with a single training sample in the last category)
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図 7 Sigmoid fitting parameters for the Segment database
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図 8 Sigmoid fitting parameters for the unbalanced Segment

database (with a single training sample in the last category)

92.19%. Figure 4 shows the classification accuracy obtained

by both methods for the Optdigits database. Again, the soft-

margin parameter was experimentally fixed in C = 60. The

maximal accuracies for the proposed and the independent

fitting methods were both equal to 97.27%. Finally, Figure

5 shows the accuracy results for the Satimage database. The

maximal accuracies for the proposed and the independent

fitting methods were respectively 91.80% and 91.45%. As it

can be observed, there is no statistically relevant difference

on the accuracy obtained by both methods.

In order to analyze the behavior of the proposed method

for unbalanced data, the Segment database was modified,

leaving a single training sample on the last class “Grass”,

resulting in a proportion of 30:1 of unbalance between this

class and the other 5 classes, each with 30 training samples.

The test data was kept complete. Figure 6 show the results of

this experiment. The independent fitting method’s accuracy

dropped almost 10%, while the proposed method’s accuracy

presented no significant variation.

Figures 7 and 8 shows the analysis of the sigmoidal func-

tions parameters for each of the classifiers, respectively for

the original segment data and the unbalanced one. On the

original database, all classifiers are trained with 60 samples

(30 for each class). On the unbalanced case, as the last class

has just a single sample, some classifier (which have their

labels underlined on the x-axis on Figure 8) have 31 training

samples. The small differences on the number of support vec-

tors and sigmoidal parameters for the unchanged classifiers

are due the different average and standard deviation found

on the normalization procedure.

In Figure 7, both methods generate similar sigmoidal func-

tions. For the unbalanced case, however, the independent

fitting method presents only small change for both parame-

ters, while the proposed method presents significantly higher

values of B and more negative values of A for the classifier

with large difference between both classes’ training samples

number. This, together with the higher accuracy obtained

confirms the ability of the proposed method on adapt the

sigmoid functions in order to maximize the global general-

ization.

5. Discussion and Conclusions

This paper proposed a new method for obtaining proba-

bilistic outputs for multiclass SVM. The method, based on

Platt’s method of fitting a sigmoidal function on the out-

put of a binary SVM, differ from traditional approaches that

naively fit each SVM independently. Instead, a single opti-

mization procedure maximizes the decoded posterior proba-

bilities.

Several experiments showed that, for simple databases,

the method presents comparable results with the naive ap-

proach, with no statistically significant difference. For the

unbalanced problem used on the experiments, the proposed

method outperformed the previous method, presenting a

higher accuracy. Analysis of the obtained sigmoidal function
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parameters shows that the new method successfully adapted

the fitting functions on the unbalanced classifiers.

Future works include the application of the proposed

model to the large scale classifier CombNET-III, as it of-

ten presents problems of unbalanced categories on its mul-

ticlass SVM based branch network. Also, a computational

complexity analysis of the new method is still necessary.
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